Ebook Code: RENZ4015

Bookle

Activities for $8-10$ yrs

Written by Fiona Rayns. Illustrated by Melinda Brezmen.
© Ready-Ed Publications - 2003.
Published by Ready-Ed Publications (2003) P.O. Box 276 Greenwood W.A. 6024

COPYRIGHT NOTICE

Permission is granted for the purchaser to photocopy sufficient copies for non-commercial educational purposes. However, this permission is not transferable and applies only to the purchasing individual or institution.

Contents

Teaching Points 4, 5
Learning Outcomes 6, 7
Theme Activity
Air Transport A Flying Timeline
Air Pollution
Making a Helicopter (1)
Making a Helicopter (2)
Subject AreaPage
Space Transport The Space RaceEmail From Space
Somewhere in a Galaxy (1)
Somewhere in a Galaxy (2)
Water Transport Shipping AroundCar FerryBattleships (1)
Battleships (2)
Ship Ahoy (1)
Ship Ahoy (2)
Density Experiment (1) (1)
Density Experiment (2)
Bicycle Transport As Easy As Pi (1)
As Easy As Pi (2)
Bike Check-UpHead HardwareGroovy Gears28
More Crazy Cogs \& Groovy Gears (1) Science/Maths 29
More Crazy Cogs \& Groovy Gears (2) Science/English 30
Cog Templates Science 31
Road Transport Car Park (1)Maths (Space)32
Car Park (2) Maths (Space) 33Late for School
Travelling to School (1)
Travelling to School (2)
Road Trains
Sign Language (1)
Sign Language (2) (2)
What's That Sign?SkateboardingThe Language of Skateboarding
Are We There Yet?
Maths (Time) 34
Maths (Number) 35
Maths (Number) 36
Maths (Number) 37
English 38
English 39
English 40
English 41
English 42
Game 43
Answers 44

Tlahing a Helicapter (ट)

3. Using your design from page 10, experiment with the blade length. Construct another helicopter using longer blades and one using shorter blades. Test all three helicopters from the same height.
\square What differences are made to the flight pattern? Give details of the blade lengths.
4. Make your blades out of different materials, e.g. plastic, popsticks, feathers, Plasticine. What works best? Give reasons why you think certain materials fly better than others.
\qquad
\qquad
\qquad
Conclusions:
\square Write up all of your findings. Decide which of your models was the best, giving reasons to support your answers.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Samewhere in a Galaxy ...(1)

Greetings Earthlings ...
Wherever you live, one of the first things you learn when you own a vehicle is that it won't go if you don't put the right sort of fuel in it.

Match the machine with the fuel:
aeroplane
older car
modern car
bus
solar powered car
hybrid car
space shuttle

Here on Planet Yaboodaboodoo our spaceships run on three different types of fuel. Like your petrol stations on Earth, the fuel is stored in large underground tanks.

Calculate how much money will need to be paid by each customer based on the prices shown below.
solid rocket fuel
sun
aviation gas
diesel
petrol and electricity
unleaded petrol
leaded petrol

Write your answers below.

1) 50 L of Wibblegas
2) 5L of Xyblipanol
3) 19L of Zlubjuice
4) 26 L of Wibblegas
5) 43L of Wibblegas
6) 45L of Xyblipanol
7) 23 L of Zlubjuice

Density Experiment (1)

If you've ever been swimming in the sea you may have noticed that you seem to float better than you do if you go swimming in the local pool.

Let's find out why this happens.

You will need

- 2 clear containers
(e.g. glass jars, drinking glasses or beakers)
- 2 eggs (raw)
- Salt

- Teaspoon
- Water

What to do

1. Fill one container about half full

with water. | 2. Place about 3 teaspoons of salt in the |
| :--- |
| other. Half fill it with water and stir |
| until the salt |
| disappears. |

Use the diagram to show what happens to the eggs.
Label the eggs' water (fresh or salt).
Adding salt increases the density of the water and helps the egg to float. Like you, and the eggs used in the experiment, ships float higher in salty water.

As Easy Hs Pi (己)

\square Think back to your experiment on page 24 and then answer the following. Did all of the bikes travel the same distance?

What happened to the distance travelled (the circumference of the wheel) as the height (diameter) of the bike tyre increased?
\square Use a calculator to divide the circumference of the tyres by their diameter.
$\frac{\text { Circumference (cm) }}{\text { Diameter (cm) }}$

Round your answer to two decimal places, e.g. $1.23456 \approx 1.23$ and fill in the last column of the results' table.
Compare your results with another group's - if you have all measured accurately you should have the same number, which is \qquad .
This number is called pi or $\boldsymbol{\pi}$.
Long ago the ancient Egyptians and Babylonians discovered $\boldsymbol{\pi}$ and people have been fascinated by it ever since. You rounded pi to two decimal places, but mathematicians using computers have been able to calculate it to more than 100000 places!

What's My Name?
\square Complete the "pi" words below:
a. A musical instrument

PI \qquad
b. A tube

PI___
c. A seed

PI
d. Meal outside

PI \qquad
e. A farm animal

PI
f. A cushion

PI \qquad

g. A fruit

PI \qquad
h. A sea robber

PI \qquad
j. A game played with bats

PI \qquad
k. A colour

PI \qquad

