Ebook Code: RENZ0078

Contents

Teacher Notes 4
Curriculum Links 5
Integers
Teachers' Notes 6
Imagining Negative Numbers Part 1 7
Imagining Negative Numbers Part 2 8
Where Am I? 9
Integer Addition 10
Integer Subtraction 11
Walking Up and Down the Number Line 12
Which is Larger? 13
Multiplication of Signed Numbers 14
Multiply and Divide 15
Indices, Squares and Square Roots
Teachers' Notes
Using Index Numbers
Place Value Revisited
Prime Factor Trees20
Easy Calculations Using Prime Factors 21
A Different Approach to the Lowest Common Multiple 22
A Different Approach to the Highest Common Factor 23
Square Numbers 24
Square Root 25
Calculations and Algebraic Generalisations
Teachers' Notes 26
How We Calculate 27
Get the Order Right 28
Calculations With Formulas 29
Scientific Formulas 30
Create Your Own Formula 31
Catching a Taxi Part 1 32
Catching a Taxi Part 2 33
Electrician and the Plumber Part 1 34
Electrician and the Plumber Part 2 35
Fractions, Decimals and Percentages
Teachers' Note 36
Equivalent Fractions 37
Adding and Subtracting Fractions 38
Multiplying and Dividing Fractions 39
Ratios are Fractions 40
Fractions and Percentages 41
Decimals and Percentages 42
Fractions and Decimals 43
What is my Test Score as a Percentage? 44
What's the Discount? 45
Best Buy 46
Linear Equations
Teachers' Notes 47
Equations Versus Expressions 48 8
One-Step Equations 49 9

Backtracking

Backtracking 50 50
Two Step Equations
Two Step Equations 51 51 1 1
Checking Solutions 52
Solving Real Life Problems 1 53
Solving Real Life Problems 2 54
Answers 55-58
Answers 5
34

. Teachers' Notes

Integers

Imagining Negative Numbers

This activity exposes students to the real life uses of negative numbers in two contexts. Students can further extend their understanding by a study of international temperatures, as given in Task C.

Where Am I?

In this activity students have the opportunity to familiarise themselves with the concept of a number line. Students should be able to fluidly explain the position of certain numbers relative to other numbers on the number line. Students can consolidate their understanding with Task C, and can make a game of it.

Integer Addition

This activity teaches students a method fo adding directed numbers. For example,+7 means to start at -3 on the numberline, turn towards the positive direction and move 7 spaces up the another example, $4-(-3)$ means to start at 4, turn towards the negative direction and then turn again (the second negative reverses the direction) andmove 3 spaces up the number line to 7 . Task C is an extension activity that students may like to explore using their calculators.

Integer Subtraction

Similar to the previous activity, students use the strategy of moving up and down the number line to subtract directed numbers. For example, -5-7 means starting at -5 , turning towards the negative direction and moving 7 spaces down the number line to -12 . Task C is an opportunity for students to test their skills with one of the numerous free maths games available on the internet.

Walking Up and Down the

Number Line

This is a page of mental maths questions for students to practise their grasp of the addition and subtraction of directed numbers. Students are to be encouraged to attempt this task without using a number line, to help them develop their mental visualisation.

Which is Larger?

This activity allowsstudents to practise their understanding of ordering and analyzing directed numbers. Students are also encouraged to use the correct inequality symbols. Task C provides students with another internet resource to practise their skills.

Multiplication of Signed Numbers

This activity is an investigative task for students to explore the rules behind multiplying and dividing directed numbers. Task B allows students to summarise their findings and develop a set of rules. Task C is an important task for students to explore to ensure they understand that the same rules apply for division as for multiplication.

Multiply and Divide

This is another mental maths task for students to test their skills with multiplication and division. This task can be used as an assessment task to test the progress achieved by students to date.
a. What number could you use to represent the level that the Butcher and Bakery are on?
\qquad
b. What do the negative level numbers represent?
\qquad
c. If you park in Car Park A and travel on the lift to the Medical Centre, how many floors will you pass?
\qquad
d. You leave the Post Office and travel 4 levels down on the lift Do you arrive at the Laundromat?
e. If you leave the Laundromat and travel up the lift 5 floors, where do you end up?
\qquad
f. Maria parks in Car Park A, travels up 4 floors, then up 3 more floors, down one floor, up 3 floors andthen down 9 floors. Write down all the places that shevisited.

\qquad
\qquad
g. Gianni starts on level G, travels to level -2, then to level 3, followed by level 1 , then back to level G. Describe Gianni's movements on the lift.
\qquad
\qquad
\qquad

Siena Shopping Village Directory

Store Level

Appliances 5

Medical Centre
Post Office/Newsagent 3

Greengrocer 2
Supermarket 1

Butcher/Bakery G
Delicatessen -1
Laundromat -2
Customer Service -3
Car Park A -4

Teachers' Notes

Indices, Squares and Square Roots

Using Index Numbers

This activity explores how index numbers can be used to simplify numerical expressions. Task A asks students to simplify expressions while Task B asks students to expand simplified expressions. Task C can be used to allow more capable students further exploration of the index laws.

Place Value Revisited

Students are encouraged to explore how place value can be expressed using index notation. This task will help students progress to using and understanding scientific notation. Task C allows students to explore how the powers of 10 are used in real life to explore the scale of our universe. This might be a nice activity to explore as a class.

Expressions with Indices
This activity extends using inde notation in a more generalised context, using variables to represent numbers. TaskB is more advanced and will demonstrate whether students have a strong grasp of these concepts. Task C allows students to use their creativity while also demonstrating their success in consolidating these core concepts.

Prime Factor Trees

This task allows students to revisit their use and understanding of prime factor trees. This activity extends this understanding further by asking students to simplify their answers using index notation.

Easy Calculations Using Prime Factors

This activity exposes students to the power of expressing numbers in terms of their
prime factors. By expressing two numbers in a multiplication calculation by their prime factorisation, the calculation can be made easier and more efficient.

A Different Approach to the Lowest Common Multiple

Many students determine the LCM for two or more numbers by the more inefficient method of listing numbers. Here students are shown how Prime-Factor Trees can make the task easier and more efficient.

A Different Approach to the Highest Common Factor
Many students determine the HCF for two or more numbers by the more inefficient method of listing numbers. Here students are shown how Prime Factor Trees can nake the task easier and more efficient.

El Square Numbers

This activity serves as a refresher exercise for looking at square numbers. Task A is a simple recall task while Task B allows students to explore the x^{2} function on their calculator. Task C is slightly more challenging, allowing students to explore a pattern involved in squaring a particular type of number. Discussion of their findings with the class is encouraged.

Square Root

In this activity students explore the inverse of the squaring operation, namely the square root. Students are encouraged to estimate values and also employ technology to calculate values to an appropriate number of decimal places.

Instead of writing out long calculations, we can sometimes use index numbers or powers to write a shorter expression.

* TASKA For each of the following expressions, write a shorter, simplified expression. Questions a and chas been partially completed for you.

a. $2 \times 2 \times 3 \times 2 \times 3 \times 3 \times 2$

e. $\frac{7 \times 7 \times 7 \times 2 \times 2 \times 3 \times 7 \times 2}{3 \times 3 \times 2 \times 7 \times 7 \times 3}$

b. $5 \times 5 \times 6 \times 5 \times 5 \times 7 \times 7 \times 6 \times 5$

f. $3 \times 2 \times 3 \times 3 \times 4 \times 2 \times 4 \times 2 \times 3 \times 2 \times 4=\square$
c. $\frac{3 \times 3 \times 2 \times 3 \times 2 \times 4 \times 2}{2 \times 2 \times 3 \times 4}$

g. $6 \times 4 \times 2 \times 6 \times 6 \times 4 \times 4 \times 2 \times 4^{3} \times 6^{4} \times 2^{5}$

*TASK W Write each of the following expressions (which are in index form) in expanded form. In other words, write them as they would appear before they are were simplified.

f

$$
\frac{\left(4^{2} \times 11^{3}\right)^{2}}{\left(3^{4} \times 7^{2}\right)^{3}}
$$

TASKC RESEARCHCHDINE

In the work that you have done in Task A and Task B, you have discovered a few of what we call the Index Laws. In small groups, research as many Index Laws as you can find. Create a poster showing all these Index Laws and make sure that you include some examples to show how each one works.

Teachers' Notes

Calculations and Algebraic Generalisations

How We Calculate

This activity exposes students to the correct use of BIMDAS in conducting calculations. Students are very strongly encouraged to show all their working out to ensure that they can demonstrate the method clearly.

Get the Order Right

This activity builds on the previous activity and allows students to further practice using the correct order of operations. Task B will help students understand the benefit of showing all their working out. Students are to examine these "solutions" for errors and to then correct the errors that they see. Students will have achieved excellent consolidation with their success in this task.
Calculations with Formulas This task shows students the real life use of formulas. Task A teaches students how to substitute into formulas and calculate correctly using BIMDAS. Task B exposes students to a variety of different formulas. Task C is a research task where students can explore various financial formulas.

Scientific Formulas

This activity builds on the skills learned in the previous task. Students will use and substitute into a variety of real scientific formulas which will complement the work that they undertake in the science curriculum. Task C extends these concepts by asking students to informally solve equations. This concept is visited in detail in the final section of the book.

Create Your Own Formula
 In this activity students are asked to read information and transform it into a formula. Many of these formulas appear in real life and contexts which students can understand. Translating real life mathematical processes into mathematical symbols is an important higher order skill.

Catching a raxi

The first activity allows students to explore the visuah representation of a commonly used function and exposes students to the fact that functions are represented by an equation, a table of values and a graph. This activity makes a strong introduction to future function work.

Electrician and the Plumber

Similar to the "Catching a Taxi" task, this activity provides students with another readily accessible example of the various representation of functions.

How We Calculate

When we have a few calculations to perform, all in the same question, how do we know which ones to do first? We follow the mathematical rules of BIMDAS.

For example, if we want to calculate - $10 \div 5 \times 3+(7-4)^{2}$, we follow the rules of $\mathcal{B I} \mathscr{M D} \mathcal{A S}$ as shown below.
$=-10 \div 5 \times 3+(3)^{2} \longleftarrow$ Inside the brackets first.
$=-10 \div 5 \times 3+9 \quad \leftarrow$ Ulse the power, calculate 3^{2}.
$=-2 \times 3+9 \quad \leftarrow$ Working left to right, we divide first.
$=-6+9$
$=3$
\leftarrow Multiply next.
\leftarrow Calculate last.

Brackets

Indices (powers)
Multiplication
Division
Addition
Subtraction
Remember: When there is a string of addition and subtraction or a string of multiplication and division, we simply calculate from left to right.

Calculate each sum below using the laws of BIMDAS. Set out your working as shown above.

