Ebook Code:

RENZ0056

MASTERS

Book 6 - Ages 10/11

Measurement in Mathematics

Series

Practical measuring activities for the classroom.

Written by Gerry Westenberg. Illustrated by Rod Jefferson.
© Ready-Ed Publications - 2001
Published by Ready-Ed Publications, P.O. Box 276, Greenwood ,WA, 6024
Email: info@readyed.com.au Website: www.readyed.com.au

COPYRIGHT NOTICE

Permission is granted for the purchaser to photocopy sufficient copies for non-commercial educational purposes. However this permission is not transferable and applies only to the purchasing individual or institution.

ISBN 1863971831

Contents

Topics/skills 2
How long is a piece of string? 4
Are we there yet? 5
Measure to the nearest mL and L 6
Could you be an Olympic champion? 7
Do polygons like rulers? 8
Sneaky maths 9
Round and round we go! 10
Circumference 11
Twinkles and tessellations 12
Tessellations to try 13
Let's explore area 14
Not area again! 15
The big cover-up 16
But what if they aren't square? 17
Have you got a problem? 18
Measuring the volume of solids 19
What is the volume of that? 20
Volume using cubes 21
Changing from volume to surface area 22
Related measurements 23
The elephant needs a diet 24
Measure to the nearest kg 25
Measure to the nearest kg \& g 26
Suspension 27
Calculations based on a calendar 28
A timeline 29
More timelines 30
Time activities in hours, minutes and seconds 1 31
Time activities in hours, minutes and seconds 2 32
How many seconds in a year? 33
Clocks 34
Answers 35, 36

Name:

Measure to the nearest mL and L

\square What you need: a graduated mL jar and a litre jar, 10 assorted containers, e.g. milk carton, jam jar, etc.

- Yourtask:

How many mL are in a litre? I'm glad you asked. There are 1000 mL in one litre.

1. Using your litre container, fill each of your 10 containers with water one at a time.

Some will use more than 1 litre, some will use less than one litre. Estimate the volume, in litres, of 6 of the containers.

Item	Estimate in L
1.	
2.	
3.	
4.	
5.	
6.	

2. Now repeat Activity 1 using the graduated mL jar.

Item	Estimate in mL
1.	
2.	
3.	
4.	
5.	
6.	

See if you can find an easy and accurate way of actually
 measuring the volume of the remaining four containers.

Do polygons like rulers?

\square Your task: Measure the perimeters of the polygons below using both millimetres and centimetres. When measuring in cms, go to the nearest whole number.

Shape	$\mathbf{m m}$	$\mathbf{c m}$
a.		
b.		
c.		
d.		
e.		
f.		

Now draw 5 shapes of your own and measure the perimeter in mm and cm .

Name:

Tessellations to try

Tessellations can be made by cutting a piece off one side of a shape and adding it to another side. Thus, you can change the shape completely. An artist named Escher was famous for these types of drawings.

Here is an example with a square.

Here is one with a triangle.

\square Now try some for yourself. You can choose either:
2 rectangle shapes, or
2 triangle shapes, or
1 rectangle, 1 triangle shape.
Can a circle tessellate? Find out if it can or not. If not, why not?
\qquad
\qquad
\qquad

Name:

Not area again!

1. Your task: Count out the number of squares in each figure below.
a.

b.

c.

Answer
d.

Answer

e.

Answer \qquad
2. Try these! Count the number of rows of squares and the number of columns of squares, then count the total number of squares.
b.

a.
rows \qquad rows
columns total number
C.
(area)
rows \qquad (area)
columns
total number

rows
columns
d.

rows
columns
total number (area)
3. What is an easier way to work out the area of a rectangle?
4. Write down your rule, and check to see if it always works. \qquad

Name: \qquad

Measuring the volume of solids

\square What you need: a large container of water, a graduated jug, a tray with sides to it, string, 10 solid items.

Remember that 1 litre of water is equal to $1000 \mathrm{~cm}^{3}$ and 1 mL of water is equal to $1 \mathrm{~cm}^{3}$.

\square Your task:

Fill the container with water to the very top. Tie a piece of string around one of your objects and lower it to the bottom of the container. Water will spill out. Now take the object out and, using the graduated jug, see how much water is needed to fill the container again. The amount of water an object displaces (pushes over the side of the jug) is equal to the volume of the object.

Repeat the steps for each item and fill in the table below. (Hint: If an object floats, you may need to push it under the water.)

Item	Volume	Rank
1. e.g. rock	400 mL	
2.		
3.		
4.		
5.		
6.		
7.		
9.		
10.		

