

Ebook Code: RENZ0048

K - 2 Maths Measurement Activities

A practical resource for teachers of junior primary classes.

Provides students with written activities to help develop and enhance their use of early measurement skills and processes.

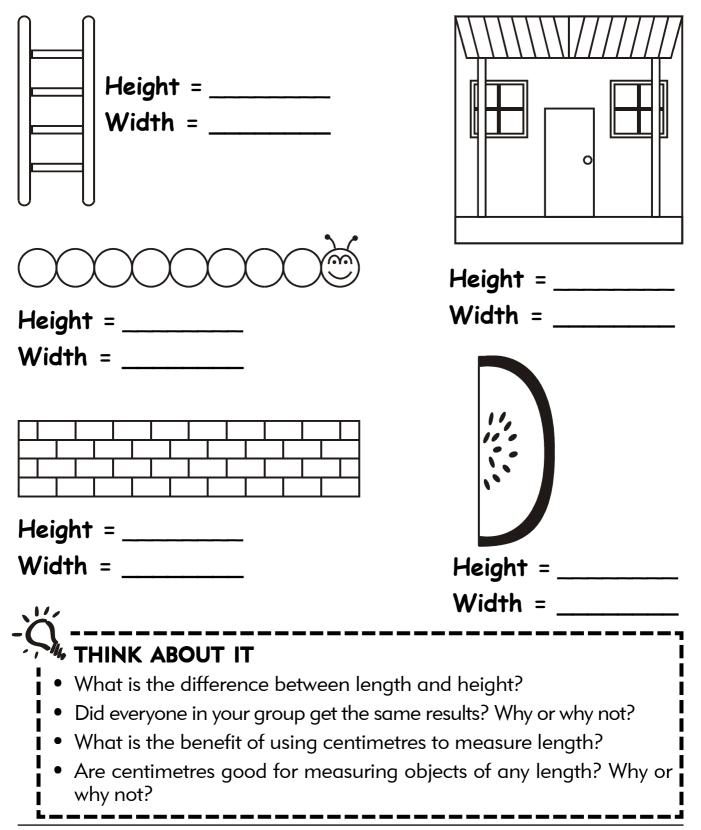
Written by Merryn Whitfield. Illustrated by Terry Allen. © Ready-Ed Publications - 2004 Published by Ready-Ed Publications (2004) P.O. Box 276 Greenwood WA 6024 Email: info@readyed.com.au Website: www.readyed.com.au

COPYRIGHT NOTICE

Permission is granted for the purchaser to photocopy sufficient copies for non-commercial educational purposes. However, this permission is not transferable and applies only to the purchasing individual or institution.

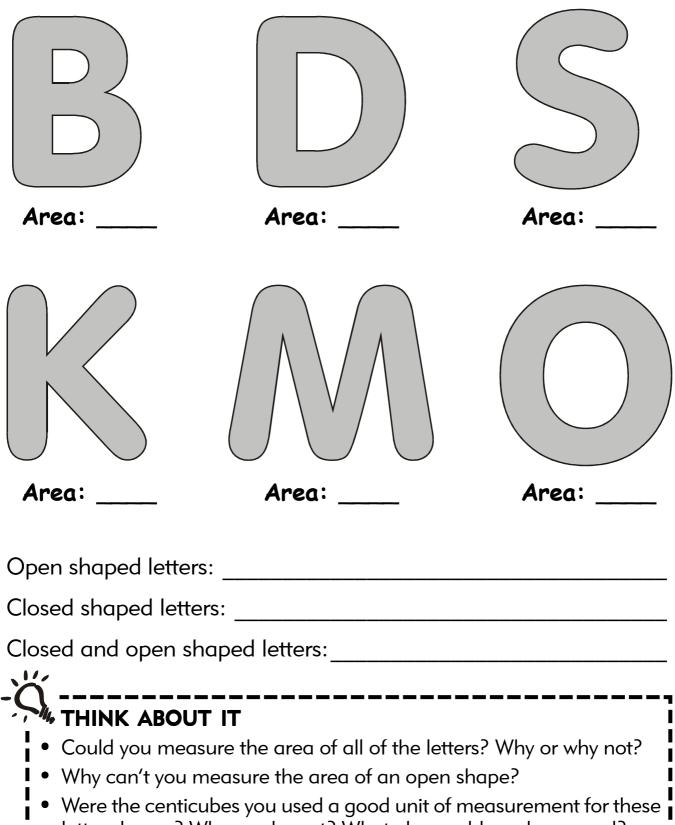
ISBN 1 86397 607 8

Contents


Introduction	2
Links to Student Outcome Statements	4
Skills Checklist	6
Teaching Notes	7

Activity Pages	Maths Concept	
Measuring Length	Length	10
Straight and Curvy Lines	Length	11
Alphabet Length	-	
I'm Bigger Than You!	-	
Come Closer	0	
Measuring Up	0	
Feet	-	
Shaping Up	5	
It's a Cover Up!		
Side By Side		
Alphabet Shapes		
If the Shoe Fits		
Area Challenge	Area	22
Equal Areas		
What is Full?		
Cubed Combinations	1 7	
Compare and Label	• •	
Fill It Up		
Dump and Pack		
Water, Water Everywhere		
Ordering Volume		
Heavier or Lighter?		
Mass Match Up		
Measuring Mass		
All About Balance		
Up, Down or Level	Mass	35
Solve it		
Size and Mass	Mass	37
Seasons Through the Year	Time	38
Four Step Sequence		
Six Step Sequence	Time	40
Time's Up!	Time	41
Is It Time Yet?		
It's That Time Again	Time	43
When?		
Make a Calendar	Time	45
Real Life Maths		
Challenge Page		47
Answers		48

Measuring Up


☆ Below are a number of different pictures. Using a measurement device marked with centimetres, measure the length, height and width of each picture and record your results in the space provided.

Name:_____Date:___

Alphabet Shapes

Using centicubes or MAB blocks (1's), cover the letters of the alphabet with closed areas. Record your results in the space provided.

letter shapes? Why or why not? What else could you have used?

. _ _ _ _ _

Name:

What is Full?

Before you start this activity, make sure that you have everything that you need. Using a single cup, fill it with water (or sand). Then use this cup to pour into a variety of different containers and record the results using the table below. Remember to use the cup **ONCE** only with each container.

Container	Not full	Full	Over full
Tub of margarine			
lce cream container			
Egg cup			
Lunch box			
Drink bottle			

What does full mean?

Which container held the smallest amount of water?

How do you know?

Which container held the largest amount of water?

How do you know?

- Was the cup you used a good way of measuring the capacity of the containers? Why or why not?
- What else would have been good to use?
- Why do we need to know how much a container will hold?
- How did you fill containers with small openings?

Heavier or Lighter?

 \checkmark In the space below, draw a picture of one object. Then share it with a friend.

My drawing is a	My friend drew a
Which object is heavier?	Which object is lighter?
How do you know?	How do you know?
• What is mass?	↓
 Can you tell the mass of an object is How can you tell if an object is 	ct just by looking at it? Why or why not? heavy or light?

Name: _____ Date: __

All About Balance

You will need to use an equal arm balance and a unit of measurement. In this activity you will be experimenting with the changes in mass (if any) when you change the form of the object in some way. For example water as a liquid, or as an ice cube. Remember when measuring mass, do not add or take away any of the object. Record your results using the table below.

My unit of measurement is _____

Object	Form	Estimate	Measurement
water	ice cube		
	liquid		
jelly	liquid		
	set		
chocolate	block		
	melted		
egg - cracked	raw		
	cooked		
Plasticine	ball		
	snake		

Why did you choose that unit of measurement?

Did it work well? _____ Why or why not?_____

What problems were there when measuring the mass of the liquids?

How did you solve this problem?
 Does the mass of an object change when its form is changed? Why or why not?
 What factors do change the mass of an object?