\\ \title{
Ebook Code:\\ \title{
Ebook Code: RENZ0043
} RENZ0043
}

Mote

Timed Maths

 Problems
5, 10 and 15 minute problems for 8 to 10 year olds

Written by Jane Bourke. Illustrated by Terry Allen. © Ready-Ed Publications - 2002. Published by Ready-Ed Publications (2002) PO Box 276 Greenwood Perth WA 6024
E-mail: info@readyed.com.au Web Site: www.readyed.com.au

COPYRIGHT NOTICE

Permission is granted for the purchaser to photocopy sufficient copies for non-commercial educational purposes. However, this permission is not transferable and applies only to the purchasing individual or institution.

More Timed Maths Problems Introduction

This book follows on from the very popular 'Timed Maths Problems' of a few years ago.

It presents a range of problem solving techniques in a gradually more complex way as each section of the book is encountered. This enables problems to be grouped according to the time intended for an activity to be completed: 5 minutes, 10 minutes or 15 minutes. Naturally, these times are arbitrary and will range widely depending upon the abilities of the students, but the opportunity exists to extend students by presenting problems as a challenge to be completed within the specified time. The Teachers' Notes section gives an outline of the various strategies that the students will use as they attempt the problems.

The problems in this book are ideally suited to a maths learning centre set up in the classroom. The problems can be copied, cut up, laminated and placed in boxes with students selecting a problem from the appropriate box, depending on how much time they have.

Student Outcome Statements

The problems in this book relate to the following outcome statements:
Working Mathematically: Uses Problem Solving Strategies 3.3.
Uses problem solving strategies that include those based on selecting key information and representing it in models, diagrams and lists.

Number:

Number Patterns 3.12:

Equations 3.13:
Applying Numbers 3.14:
Written Computation 3.16:
Chance and Data:
Interpreting Data 3.27:

Evident when the student ...

Uses patterns and follows rules to solve word and number problems.
Uses patterns to solve number problems.
Chooses appropriate calculations to solve word problems.
Calculates word and number problems using multiplication, addition, subtraction and division.

Evident when the student ...

Interprets straightforward one and two-way tables.
Arranges data in a meaningful way in order to solve a word problem.

Contents

An Introduction 2
Teachers' Notes 4
Five Minute Problems
Making a List 7
Guess and Check 10
Find a Pattern 13
Solve an Easier Version 16
Logical Reasoning 19
Ten Minute Problems
Making a List 22
Create a Diagram 24
Logical Reasoning 26
Guess and Check 29
Find a Pattern 31
Working Backwards 32
Mixed Fifteen Minute Problems
Mixed Strategies 34
Answers 39-40

Teachers' Notes

The problems in this book require the use of the range of strategies detailed in these notes. Teachers may choose to introduce the activities by explaining the strategies before assigning the problems. With this in mind, each section in this book incorporates an explanation and examples for students to consider before attempting the problems themselves.

Making a List: This strategy involves examining all the possibilities for a solution by listing the various elements in the problem. The technique can be used when information has to be gathered and checked in order to cover a variety of possibilities.
Example: Sam has an orange, a sandwich and yoghurt in his lunch box. List all of the different orders he could eat them in.

> orange, sandwich, yoghurt sandwich, orange, yoghurt yoghurt, orange, sandwich yoghurt, sandwich, orange sandwich, yoghurt, orange orange, yoghurt, sandwich

There are six different orders.
Guess and Check: This is a good strategy to use when introducing children to problem solving. As its name suggests, the children guess possible combinations in the problem, use the guess to reach an approximate answer and then attempt the problem. When an answer is obtained the guess is modified so that an answer which is closer to the correct one can be gained.
Example: A farmer has 55 cows and sheep in total. If he has nine more cows than sheep, how many of each does he have?

The first guess might be 25 cows. If this is true then there would be 16 sheep, making a total of 41 animals altogether. This guess is too low so a higher guess can be made until the student works out that there must be 32 cows and 23 sheep.
A table can be used to check guesses.

Number of cows	25	34	32
Number of sheep	16	25	23
Total	41 (too low)	59 (too high)	55 (correct)

Find a Pattern: This requires the problem solver to find a pattern in the information given. This must then be continued on to find the answer. Patterns might be based on number qualities, repetition of shapes, repetition of words or spelling, for example.

Example:

The answer is:

Solve an Easier Version of the Problem: This strategy is similar to Find a Pattern. The student finds the solution to a complex problem by working out an easier version and then applying the same rules to the harder version.
Example: There are 30 people at a meeting. Everyone shakes hands with each person once. How many handshakes take place?
Students could first work out how many handshakes would occur with a group of five and then look for a pattern to apply to the more difficult problem.

Logical Reasoning: This strategy helps students to develop skills in deductive reasoning by allowing them to use what they already know to solve the problem. Students develop a hypothesis and then check their answer as opposed to guessing the answer. Clues should be written down in the grid as shown.
Example: Jennifer, Neil and Amanda went to a costume party. They had a red mask, a green mask and a black mask to choose from. Jennifer's favourite colour is green. Amanda hates black and Neil took the leftover mask. Who wore each colour?

	Green	Red	Black
Jennifer	yes	no	no
Neil	no	no	yes
Amanda	no	yes	no

Create a Diagram: This strategy requires the students to draw a diagram of the problem which can then be used to provide a solution. It is particularly useful with problems relating to area.

Example:

Julie has two identical garden beds that form a cross. Bed 1 is 14 metres long and Bed 2 is 3 metres wide. What is the distance around the edge of the garden?

Working Backwards: This strategy works best when a problem is stated so that the final outcome is clear. It is necessary to determine the range of events that occurred that produced the result.

Example: Sebastian has saved $\$ 30$ in his account this week. Each week he saves $\$ 5$ more than the week before. How much did Sebastian save three weeks ago?
If Sebastian saved $\$ 30$ this week he must have saved $\$ 25$ last week and $\$ 20$ the week before. This can be written into a table.

Money saved:	$\$ 30$	$\$ 25$	$\$ 20$	$\$ 15$	$\$ 10$
Weeks ago:	This week	one	two	three	four

From the table we can see that Sebastian must have saved $\$ 15$ three weeks ago.

Find a Pattern

I This strategy is very useful in saving time to work out a problem. Often a problem can be solved I by identifying a pattern that occurs, making it easy to predict what will happen next. Tables can be I used in this strategy to help you find possible patterns.

Example: Jessie has started delivering pamphlets after school each day. On Monday she delivered	Day	No. of Pamphlets	Time taken
I pamphlets to 30 houses and it took 30 minutes.	Mon	30	30
On Tuesday she delivered 40 pamphlets in 35			
I minutes. On Wednesday she delivered 50	Tue	40	35
pamphlets in 40 minutes. If she continues at this rate, how many pamphlets will she deliver on Friday	Wed	50	40
I and how long will it take?	Thu	60	45
A table can be used to identify a pattern:	Fri	70	50

