

Ebook Code: RENZ0018

Book 5 - Ages 9/10
 Measurement in Mathematics Series

Practical measuring activities for the classroom.

Written by Julie Campbell. Illustrated by Rod Jefferson.
© Ready-Ed Publications - 2001
Published by Ready-Ed Publications, P.O. Box 276, Greenwood ,WA, 6024
Email: info@readyed.com.au Website: www.readyed.com.au

COPYRIGHT NOTICE

Permission is granted for the purchaser to photocopy sufficient copies for non-commercial educational purposes. However this permission is not transferable and applies only to the purchasing individual or institution.

Page	Part One: LENGTH	Concept
5	Long Distance Drivers	Measuring in centimetres.
6	Millimetres Are Mint!	Measuring in millimetres and centimetres.
7	Ribbon Riddles	Measuring in millimetres and centimetres, including approximation to the nearest unit and selection of appropriate unit of measure.
8	Do You Measure Up?	Measuring in centimetres and millimetres, approximation.
9	Measuring Made Easy	Measuring in centimetres and millimetres, approximation, practical experience of one kilometre.
10	String Struggles	Direct measurement of perimeters of polygons.
11	Using Circumference	Direct measurement of perimeters of circles.
12	Using Squares	Measurement of perimeter of shapes.
13	Making Boxes	Relating length to volume.
	Part Two: AREA	
14	Dinosaur Danger	Area of regular shapes by counting squares; making shapes with a given number of square units.
15	Perimeter Problems	Area of regular shapes by counting squares; making shapes with a given number of square units.
16	Design Dilemma	Area of regular shapes by counting squares; making shapes with a given number of square units.
17	Squares and Surface Area	Area of shapes by counting squares.
18	Using Part Squares 1	Area of shapes by counting squares.
19	Using Part Squares 2	Investigation of 2D surface area of 3D shapes.
20	Outlines	Relating area to perimeter.
	Part Three: VOLUME AND CAPACITY	
21	Don't Get Wet!	Measuring in cups and millilitres to ascertain the capacity of containers.
22	I Wonder?	Measuring in litres and millilitres; comparing capacities.
23	mL or L?	Measuring in litres and millilitres; ordering containers by capacity.
24	Lost In Space	Using standard measures to compare and order the volume of solids by displacement of liquids.
25	Scale Models	Constructing 3D shapes using cubes as arbitrary units. Investigation and comparison of volumes of shapes by counting the cubes.
26	Did You Know?	Relating the measurement of volume and capacity to other measures.
	Part Four: MASS	
27	Mission Impossible	Comparison of sets of objects by hefting and balancing.
28	Balancing It All Up	Comparison of sets of objects by hefting and balancing.
29	Going Shopping	Comparison of mass; relating mass to surface area.
30	Mystery Parcels	Comparison and ordering of mass; relating mass to other measures.
31	Can You Measure Up?	Measuring mass using kilograms and grams; using appropriate units.
	Part Five:	TIME
32	How Time Flies	Solving problems based on the calendar year.
33	Dates On Calendars 1	Solving problems based on the calendar year.
34	Dates On Calendars 2	Solving problems based on the calendar year.
35	The String Pendulum	Estimating, measuring, comparing intervals of time using arbitrary units.
36	24 Hours In Every Day	Reading twelve and twenty-four hour clocks.
37	Clever Clocks	Reading twelve and twenty-four hour clocks, including reading from digital clocks.
38	TV Times	Reading simple timetables.
39	Your Day	Creating a timetable.
40	Answers	

SUGGETIONS FOR TEACHERS

The following suggestions relate to the various worksheets in each section.

LEMGTH

Page 8 - Ribbon Riddles

Discuss how curved lines can be measured. Help will be needed to complete the recording stage of the activity. A suitable scale for recording the length of the ribbons in mm and cm will need to be discussed. The horizontal axis of the graph is used to record the number of ribbons that have a particular length; i.e. if there are two ribbons at 5 cm in length, then two 5 cm columns will be recorded on the graph. Children will need access to string for measuring.

Page 9 - Do You Measure Up?

Children will need to decide on a way of measuring the length of arms from shoulder to tip of middle fingers, face perimeter and waists.

Page 10 - Measuring Made Easy

Teachers will need to discuss the type of table and column headings needed to complete the activity. Also the function of a trundle wheel will need to be revised.

Page 11 - String Struggles

Children will need to work in pairs to complete a display chart showing estimated perimeter and actual perimeter of a closed curve using a method other than a ruler.

Page 12 - Using Circumference

Teachers will need to ensure children understand that perimeter is the distance around any shape and that circumference is a special term used for the perimeter of a circle.
At this stage, string used to measure circumference is appropriate, as are flat shapes like lids and bases of circular containers for initial measuring.
A large sheet of squared paper can be made by joining four A4 sheets together
Page 13 - Using Squares
Children should record the shapes they have made onto squared paper, along with estimates and information about actual area and perimeter.

AREA

For most of the activities in this section, if wooden cubes are not available, paper or card squares cut from grid рарее ане аррогор

VOLUME AMD CAPACITY

Page 23 - I Wonder?
This activity requires three different containers with similar capacities but different shapes.

Page 25 - Lost In Space

When an object is placed in a container of water, the amount of water displaced is the volume of the object.
Displacement is an easy way to measure the volume of an irregular object. Similar sorts of activities as these can be undertaken later using a beaker calibrated in millimetres.
This activity examines the three ways to measure displacement:

1. Partly fill a container, mark the water level, place in the object and measure the distance the water level has risen.
2. Place the object in an empty container, fill or partly fill the container, mark the water level, remove the object, mark the new water level and measure the difference.
3. Fill a container to the top with water, place in the object, catch and measure the overflow.

MASS

Page 31 - Mystery Parcels

The concept here is to examine the relationship between surface area and mass. Choose containers that have roughly the same surface area but a different shape (single serve cereal boxes, margarine/butter containers with taped on lids, are ideal). Place a 'mystery object' inside each 'parcel' e.g. a lump of Plasticine will give a heavier result than an eraser. Allocate a red or blue spot to each container as a means of identification.

TIME

Page 37-24 Hours In Every Day
Verbalisation of readings using the 24 hour clock must be approached carefully. Children will need to be encouraged to find common usages of the 24 hour clock (e.g. bus timetables, police messages etc.). Reasons for the use of a 24 hour timetable need to be explored.

You will need: a number of circular lids and containers to trace around, a yoghurt or similar container, grid paper1. Measure the circumference of each shape and record the results in the table below.

Estimate your answers first.
 measure the distance across the circle. Record your results on the grid paper. What do you notice? \qquad
3. Try two more circle shapes. Trace around them onto grid paper.

Estimate, then measure the circumference and diameter of each circle.
What rule can you use to describe the size of the circumference and the size of the diameter? \qquad
\qquad

\square You will need: ruler, pencil, grid paper

Jurassic Zoo has just acquired a new dinosaur. But there is a problem - what type of enclosure should be built? They have 20 spare fence units to use.

This is one fence unit:
 (n.b. it is 1 cm)
\square Your task is to:

1) Make as many different shaped enclosures as you can using all the fence units;
2) Find out the area of each enclosure;
3) Discover the pens with the biggest area and the smallest area.

Record your results on the grid paper and answer the questions below.
Good luck!
How many enclosures did you make?
What type of enclosure had the largest area? Describe it. \qquad

Challenge:

If the zoo has seven dinosaurs in its collection, and all require the same area, how many new fence panels will the zoo have to buy? (Remember they already have 20 units to use). Explain your answer below.

Answer:
Why?
\qquad
\qquad
\qquad
\qquad

I Wander?

\square You will need: 3 different containers, water, a measuring jug
Estimate how many millilitres (mL) of water each container will hold.
Check your estimates with the measuring jug and record your results in the table below.

COMTAIMER	ESTIMATE OF CAPACITY	ACTUAL CAPACITY

Does the tallest container always hold the most?
What rule can you write about the shape of a container and how much it holds (its capacity)?

Read how much water is held in these jugs and write your answer below.

a)
b)
C)
d) \qquad
\square Draw in the correct water level on these jugs.

a) 900 mL

b) 325 mL

c) 50 mL

d) 175 mL

CAN YOU MEASURE UP?

\square You will need: a set of balance scales, 2 cm cubes, rice or sand, 2 small cardboard boxes of different shapes, 1 m lengths of a variety of substances e.g. wool, paper, tape, wire, rope, a blackboard ruler, fabric
\square Measure 1 metre lengths of all the things that you have collected. Estimate and list the order of your 1 metre lengths from heaviest to lightest.

Why did you put them in the order that you did? \qquad
\qquad
\qquad using your actual results. (The arrow means 'is heavier than')

Were your estimates correct? If not, why not?
\qquad
Write a rule about weight and length and different substances
\qquad
\qquad
\qquad

Try this!

Fill the two boxes with sand. Estimate which one will be heavier
Check this on the balance scales. Were you correct?
Now cut the boxes so that the measuring area will lay flat. Do you think that the box that held the most sand will also need the most cubes to cover the measuring area?

Yes / No. Check it out.

Where you correct?

