

Ebook Code: RENZ0017

Book 4 - Ages 8/9

Measurement in Mathematics
 Series

Practical measuring activities for the classroom.

Written by Leonie Westernberg. Illustrated by Rod Jefferson.
© Ready-Ed Publications - 2001
Published by Ready-Ed Publications, P.O. Box 276, Greenwood ,WA, 6024
Email: info@readyed.com.au Website: www.readyed.com.au

COPYRIGHT NOTICE

Permission is granted for the purchaser to photocopy sufficient copies for non-commercial educational purposes. However this permission is not transferable and applies only to the purchasing individual or institution.

Contents

Skills checklist 2
Materials required 4
Length
How did they measure? 5
Toothpick measures 6
Make a metre measure 7
Measurements from our school ground 8
Make a metre ruler 9
Throwing and stretching 10
Measure 10! 11
Measuring around 12
Constructing shapes 13
Area
Looking around us 14
Activities with area 15
Escher and shapes 16
Shapes 17
Using a geoboard 18
Geoboards again 19
Volume and Capacity
Playing with Plasticine 20
Volume and capacity 21
Boxes of sand 22
Water! 23
Rock Volume 24
Masses of cubes 25
Making solids 26
Cubes and solids 27
Mass
Making balance scales 28
A big lump of Plasticine 29
Gram and kilogram 30
How much does it weigh? 31
Weight 32
Time
Calendars 33
Calendar patterns 34
Calendar grid 35
A clock template 36
Telling time 37
Time facts 38
Schedules 39
One minute 40
Time intervals 41
Teaching suggestions - A strange clock 42
Answers 44

How did they measure?

In ancient times, people used a number of ways to measure things.
You will need:

They could use hand spans to see how long something was.

They could use footsteps to see how long something was.

They could measure with long lengths of rope (or paper or other materials).

Choose 2 of these units of measure.

Choose 6 objects around your room or school to measure. Record yourresults.
Compare your results to your partner's results.
How are they the same? How do they differ?

long lengths of rope or paper.

Items	1.	2............................
1.		
2.	-	
3.		
4.		
5.		
6.		

My partner and I measured these items: \qquad
\qquad
We used these units to measure with: \qquad
\qquad
Our results are the same/different because: \qquad
\qquad

gretivities with area

1. Trace around your hand with your fingers together to make a mitten shape.

Guess how many cubes it will take to cover the shape of your hand. \qquad
Check your guess. How many were needed? \qquad
2. Guess how many cubes will cover each of the following objects a piece of paper a magazine
\qquad your favourite book

Now check your guesses. How many cubes were needed to cover:

The amount of surface space an object takes up is called its area.
Put the objects you measured in order by area:

\qquad
3. You will need a large sheet of graph paper and some coloured pencils.

Colour a design with an area of 36 squares on the sheet of graph paper.
Make several more designs with 36 squares.
Compare your designs with a partner.

$$
\text { Remember, they all have to have the same area - } 36 \text { squares. }
$$

VOLUME AND CAPACITY

You will need:	five different bottles or jars funnels water

Label each bottle a, b, c, d and e.

Which bottle will hold less than all the others? \qquad
Estimate: which bottle will hold the most water?

Fill the smallest bottle and then pour all the water into a bigger bottle or jar.
Fill the smallest bottle again and then pour all the water into a different bigger bottle or jar.

Is the water-level the same in both big bottles?
Mark the level with a felt pen.
Is the amount of water the same in both big bottles?
\square Fill up the smallest bottle again.
Empty this into the biggest bottle, Do this again and again until the biggest bottle overflows a little bit.

How many times did you have to empty the smallest bottle before the biggest bottle overflowed?
\square Guess how many times the smallest bottle could be filled from the biggest bottle when the biggest bottle is full.

Your guess or estimate \qquad
Check, using the funnel

HOM MMCM DO IS M M FMGI?

You will need: 5 or 6 small plastic containers labelled as shown, materials to fill the containers, kitchen scales.

Fill each container with a different material such as sand, water, salt, flour, gravel.
Hold each in your hand. Estimate which is the heaviest. \qquad
Estimate which is the lightest. \qquad
Use some scales to measure and record the mass of each container.

Mass of containers		Which one was the heaviest?
a	grams	
b		
C		ich ,
d		
e		

\square Colour the pictures which show masses that total one kilogram.

Telling time
 \square What time is it?

\square Write the time it will be five minutes later.

\square Write the time it will be 1 hour later.

\square Draw an X through each incorrect clock.

